Product Code Database
Example Keywords: final fantasy -resident $99
barcode-scavenger
   » » Wiki: Cyanometalate
Tag Wiki 'Cyanometalate'.
Tag

Cyanometallates or cyanometalates are a class of coordination compounds, most often consisting only of .Sharpe, A. G. The Chemistry of Cyano Complexes of the Transition Metals; Academic Press: London, 1976. . Most are anions. Cyanide is a highly basic and ligand, hence it readily saturates the coordination sphere of metal ions. The resulting cyanometallate anions are often used as building blocks for more complex structures called coordination polymers, the best known example of which is , a common dyestuff.*Dunbar, K. R. and Heintz, R. A., "Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives", Progress in Inorganic Chemistry, 1997, 45, 283-391.


Examples

Homoleptic cyanometallates
Homoleptic cyanometallates are complexes where the only ligand is cyanide. For , well known homoleptic cyanometallates are the hexacyanides. Hexacyanometalates are known for Ti(III), V(III), Cr(III), Cr(II), Mn(IV), Mn(III), Mn(II), Fe(II), Fe(III), Co(III), Ru(III), Ru(II), Os(III), and Os(II). Other more labile derivatives are also known. The Cr(II), Mn(III), Mn(II), Fe(II), Fe(III), and Co(III) derivatives are , reflecting the strong binding of cyanide, i.e. cyanide ranks highly in the spectrochemical series when significant backbonding can occur. Since cyanide has the largest σ-donation ability at its C-end, most soluble (molecular) metal-cyanide complexes have metal-carbon, rather than metal-nitrogen bonds.Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. 2022. Coordination Chemistry Reviews. 453/. Y. Avila, P. Acevedo-Peña, L. Reguera, E. Reguera. doi: 10.1016/j.ccr.2021.214274 With low d-electron counts, however, inversion of cyanometallates to nitrile complexes can occur. Lower metal oxidation states can be achieved with binding of Lewis acids to the terminal nitrogen lone pairs.
Pentacyanocobaltate () is produced by the addition of five or more equivalents of a cyanide to a solution of a cobalt(II) salt. It is square pyramidal. Solutions of undergo a variety of reactions, such as hydrogenation:

Several tetracyanometalates are also known, the best known being those of the d8 metals, Ni(II), Pd(II), and Pt(II). These species are square-planar and diamagnetic. In addition to Ni(CN)44−, nickel also forms Ni2(CN)64-, with a Ni(I)-Ni(I) bond. The coinage metals form stable dicyanometallates, Cu(CN)2, Ag(CN)2, and Au(CN)2. For heavier metals, other stoichiometries are known such as K4Mo(CN)8 and Potassium heptacyanorhenate. Some cyanometallates are clusters featuring metal-metal bonds, such as Mo2(CN)84−.

TetracyanidoborateB(CN)4 −1+3
HexacyanidosilicateSi(CN)62– −2+4
Tetracyanotitanate(II)Ti(CN)42− −2+2
Hexacyanotitanate(III)Ti(CN)63− −3+3orange
Heptacyanotitanate(III)Ti(CN)74− −4+3
Octacyanotitanate(III)Ti(CN)85− −5+3dark green
Hexacyanovanadate(II)V(CN)64− −4+2yellow brown
Heptacyanovanadate(III)V(CN)74− −4+3scarlet purple
Hexacyanidochromate(0)Cr(CN)66− −60dark green
Hexacyanochromate(III)Cr(CN)63− −3+3pale yellow
Hexacyanomanganate(III)MnIII(CN)63 −3+3
Hexacyanoferrate(II)FeII(CN)64− −4+2
Tricyanidoferrate(IV)Fe(CN)37− −7−4
Tricyanocobaltate(III)Co(CN)36− −6−3
Hexacyanocobaltate(III)Co(CN)63− −3+3
Tetracyanonickelate(II)Ni(CN)42– −2+2yellow orange
Tetracyanonickelate(III)Ni(CN)4 −1+3
Hexacyanodinickelate(II)Ni2(CN)64− −4+1
Hexacyanogermanate(IV)Ge(CN)62– −2+4
Heptacyanomolybdate(III)Mo(CN)74− −4+3dark green
Octacyanomolybdate(IV)Mo(CN)84− −4+4yellow
Tricyanidoruthenate(−IV)Ru(CN)37− −7−4
Tetracyanopalladate(II)Pd(CN)42– −2+2
Dicyanidoargentate(I)Ag(CN)2 −1+1
Hexacyanostannate(II)Sn(CN)62– −2+4
PentacyanoantimonateSb(CN)52– −2+3
Heptacyanotungstate(IV)W(CN)73− −3+4
OctacyanotungstateW(CN)83− −3+5
Heptacyanorhenate(IV)Re(CN)73– −3+4
Tetracyanoplatinate(II)Pt(CN)42− −2+2
Hexacyanoplatinate(IV)Pt(CN)62– −2+4
Dicyanidoaurate(I)Au(CN)2 −1+1
Tetracyanidoaurate(III)Au(CN)4 −1+3
Pentacyanidobismuthate(III)Bi(CN)52– −2+3
Hexacyanidobismuthate(III)Bi(CN)63– −3+3
HendecacyanodibismuthateBi2(CN)115– −5+3


Heteroleptic cyanometallates
Mixed ligand cyanometallates with anywhere from one to five cyanide ligands have been prepared. One example is the zero-valent Fe(CO)4(CN). Heteroleptic cyanometallates are of interest outside of the research laboratory, with one example being the drug sodium nitroprusside (Na2FeNO(CN)5). Other studies have demonstrated their competency as photoredox catalysts.


Synthesis
Because cyanide is a powerful and a strong ligand, cyanometallates are generally prepared by the direct reaction of cyanide salts with simple metal salts. If other ligands are present on the metal, these are often displaced by cyanide. By far the largest application of cyanometalates is the production of Au(CN)2 in the extraction of gold from low grade ores. This conversion involves oxidation of metallic gold into Au+:
4 Au + 8 CN + O2 + 2 H2O → 4 Au(CN)2 + 4 OH


Reactions

Redox
Because the M-CN bond is strong and delocalizes electron density to the ligands, several cyanometallates exhibit multiple redox states. A well known couple is Fe(CN)63−/4−. Mn(IV), Mn(III), and Mn(II) are known for hexacyanomanganate. Few unidentate ligands allow similar redox transformations wherein both members of the redox couple are observable in solution. Another perhaps more dramatic example is the 2 e reduction of the square planar tetracyanonickelate to its tetrahedral Ni(0) derivative:
Ni(CN)42− + 2 e → Ni(CN)44−


N-Centered reactions
Many characteristic reactions of metal cyanides arise from ambidentate nature of cyanide, i.e. both the nitrogen and the carbon extremities of the anion are basic. Thus cyanometalates can be alkylated to give complexes.Fehlhammer, W. P. Fritz, M., "Emergence of a CNH and Cyano Complex Based Organometallic Chemistry", Chemical Reviews, 1993, volume 93, pp. 1243-80. Cyanide ligands are susceptible to protonation, hence many cyanometalates are highly . The nitrogen terminus is a good ligand for other metals. The latter tendency is illustrated by the condensation of ferrocyanide salts with other metal ions to give polymers, such as Prussian blue. Such polymers feature Fe-CN-M linkages.


See also
  • Transition metal nitrile complexes – coordination compounds containing nitrile ligands (coordinating via N)

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time